Blog Post

How Salmonella DT104 defeats antibiotic after antibiotic

Destiny Jolade • Oct 27, 2017


The enteric pathogen S. typhimurium has a phage-type known as DT104, which is associated with an epidemiology that is extensive and virulent. It was characterised about 30 years ago, and has spread to nearly all areas of the earth since then (2). S. typhimurium DT104 was found to have become resistant to multiple antibiotics in 1972 (2). This strain, now known as MDR-DT104, acquired the relevant mutation through the integration of an additional 43-kilobase genomic island (SGI1) into its genetic profile (3). In 1975, an alternative strain of DT104 also acquired multi-drug resistance in Thailand via different mechanisms (2). SGI1 confers resistance to a specific subset of antibiotics: sulphonamide-types, as well as tetracycline, streptomycin, chloramphenicol and ampicillin (3). However, some MDR-DT104 strains isolated in Britain were found to have added resistance to trimethoprim, (13%) ciprofloxacin (16%) or both (2%) to their anti-drug arsenal (1). In addition, some studies have reported evidence of resistance to ertapenem and ceftriaxone in some isolates (4). Ceftriaxone resistance may be conferred via transfer of the Incl1 plasmid, whereas enzymes such as IMP-4, IMP-13 and KPC-2 (that originate from E. coli) may be required to break down carbapenems (4). On the other hand, few studies have found these enzymes in any S. typhimurium phage-types (4).

MDR-DT104 is thought to have originated in Europe, where it was transmitted several times to a number of different countries therein. It then spread to Japan and to the U.S. in two separate transmission incidents, which may explain how it is also now present in Taiwan and Canada (2). However, other scientists conclude that MDR-DT104 actually originated in Southeast Asia, based on the presence of the rare ‘resistance’ genes tetG and floR (3). DT104 infects livestock such as cattle and poultry, and, subsequently, causes disease in the humans who consume them (1). The risk of drug-resistant salmonellosis is affected by several factors, including the handling of raw meat, consuming cheese made from unpasteurized milk, eating undercooked meat and (mostly in cases involving children) exposure to sand-pits while playing (1,5). The use of proton-pump inhibiting drugs and the antibiotics as listed above may also contribute to the risk of infection (2). MDR-DT104 is associated with several outbreaks among livestock in a number of countries, from the Republic of Ireland to the Philippines (2). It is also related to approximately 20,000 hospital visits and hundreds of deaths per year in the United States (2).

Historically, MDR-DT104 outbreaks have been addressed or prevented through treatment with quinolone-type antibiotics (1). However, evidence of some strains of the phage-type that have also acquired resistance to these drugs has surfaced (7). Quinolone-resistant DT104 (e.g. DT104B) strains are linked to new outbreaks with high mortality rates (6). A study of the subproteome of a clinical strain, DT104B-Se20, found seven proteins that were associated with this resistance, including familiar examples such as Omp subtypes (e.g. OmpD and OmpX) as well as the newly-discovered agent of resistance MipA (6). (Altered OmpD expression levels are also associated with carbapenem resistance (4). OmpC was also associated with the metabolic adaptations required for quinolone resistance, as were CheB, CheM, SodA and Fur (6). The clinical strain was also associated with certain proteins involved in lipopolysaccharide production (e.g. LptA and RfbF) (6). These interesting findings may form the basis for new research leading to new therapeutics or preventatives for infection with quinolone-resistant MDR-DT104.

References:

1. Threlfall EJ. Epidemic Salmonella typhimurium DT 104—a truly international multiresistant clone. Journal of Antimicrobial Chemotherapy. 2000;46(1):7-10.

2. Leekitcharoenphon P, Hendriksen RS, Le Hello S, et al. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104. Applied and environmental microbiology. 2016;82(8):2516-2526.

3. Mulvey MR, Boyd DA, Olson AB, Doublet B, Cloeckaert A. The genetics of Salmonella genomic island 1. Microbes and Infection. 2006;8(7):1915-1922.

4. Su LH, Wu TL, Chiu CH. Development of carbapenem resistance during therapy for non-typhoid Salmonella infection. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2012;18(4):E91-94.

5. Doorduyn Y, Van Den Brandhof WE, Van Duynhoven YT, Wannet WJ, Van Pelt W. Risk factors for Salmonella Enteritidis and Typhimurium (DT104 and non-DT104) infections in The Netherlands: predominant roles for raw eggs in Enteritidis and sandboxes in Typhimurium infections. Epidemiology and infection. 2006;134(3):617-626.

6. Correia S, Hebraud M, Chafsey I, et al. Impacts of experimentally induced and clinically acquired quinolone resistance on the membrane and intracellular subproteomes of Salmonella Typhimurium DT104B. Journal of proteomics. 2016.

7. Voetsch AC, Van Gilder TJ, Angulo FJ, et al. FoodNet Estimate of the Burden of Illness Caused by Nontyphoidal Salmonella Infections in the United States. Clinical Infectious Diseases. 2004;38(Supplement 3):S127-S134.



02 Apr, 2024
Discover the significance of nutrition analysis in our health-conscious world through our comprehensive guide. We explore its role in aiding informed dietary decisions, assisting food manufacturers, and enforcing labeling laws. Learn about the FDA's pivotal role in shaping nutrition analysis practices. We discuss various analysis methods, including food testing and software-based calculations. Empower yourself to make healthier choices and support the development of nutritious products. Join us in unraveling the secrets of nutrition analysis for a healthier tomorrow.
01 Mar, 2024
Water quality is important for public health, and total coliform testing plays a role in ensuring the safety of our drinking water. We will explore what total coliform testing entails, its significance, interpretation of results, and when it's necessary.
12 Dec, 2023
The significance of Bacillus cereus testing in ensuring food safety! Found in soil, dust, and raw foods, this bacterium poses a significant concern due to its potential to cause foodborne illness. Discover how food and environmental laboratories conduct rigorous testing to assess the safety and quality of food products, crucial for industries involved in food production and healthcare settings. Explore the methods, including microbiological culture and molecular techniques, employed for accurate detection. Join us in understanding how Bacillus cereus testing plays a pivotal role in upholding food safety standards, ensuring that consumers receive safe and high-quality food products.
17 Oct, 2023
From "best before" dates to expiration labels, shelf-life testing ensures the freshness and quality of our food and beverages. Delve into the world of quality control measures like microbiological, real-time, chemical, comparative, and accelerated shelf-life studies conducted in food safety laboratories. Learn how factors such as composition, storage conditions, and packaging influence product durability. Join us in appreciating the meticulous science that guarantees the safety and nutritional value of the products we enjoy every day!
By Zainab Sulaiman 26 Sep, 2023
Discover why this microbiological testing method is crucial for assessing microbial contamination in process water used across industries like pharmaceuticals and food production. Learn about the HPC test process, from sample collection to interpreting results, and its role in ensuring quality assurance, health and safety, and regulatory compliance.
11 Sep, 2023
Food is an essential part of our daily lives, providing sustenance and enjoyment. However, the safety of the food we consume can sometimes be compromised by the presence of pathogenic microorganisms. These unseen threats, invisible to the naked eye, can cause foodborne illnesses with potentially severe consequences. In this blog, we delve into the world of pathogenic microorganisms in food, their sources, impact on human health, and the crucial role of food safety measures in preventing their spread.
14 Aug, 2023
From understanding what air quality entails to exploring the factors contributing to pollutants, we'll unravel the importance of air quality testing and steps you can take to maintain clean air. Discover how pollutants from natural and human activities impact air quality and why frequent testing is crucial for health protection, awareness, and evaluating pollution control efforts. Ensure the air you breathe is clean and safe with Sure BioChem Laboratory's air quality analysis services. Take action to minimize pollutant-emitting products, ensure proper ventilation, and stay updated on-air quality conditions in your area.
01 Aug, 2023
Cleanrooms are a fascinating and critical aspect of modern industries that require precise and contamination free environments. These controlled spaces play a pivotal role in various sectors, ranging from pharmaceutical and biotechnology to electronics and aerospace. In this post, we will delve into the world of cleanrooms in pharmaceutical and biotechnology, exploiting their definition, importance, and the technologies that ensure the highest standards of cleanliness.
Routine environmental monitoring of airborne viable organisms to meet clean room standards
24 Nov, 2022
Air monitoring is an important and routine aspect of maintaining a healthy cleanroom space. Take a close look at what airborne environmental monitoring systems are, how they work, and why they are important.
Learn All About Environmental Monitoring Systems
27 Oct, 2022
Environmental monitoring is a complex concept best left to the pros. In this article, we break it down step by step to explain what environmental monitoring evaluates and how these findings are assessed at a professional level.
Show More
Share by: